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ABSTRACT 

1. Research into the integration potential of unmanned aerial vehicles with conventional 

abundance surveys has highlighted the importance of deep-learning applications to data 

processing and analysis.  

2. Here, we employed the RetinaNet convolutional neural network for the automated detection 

of dolphins in imagery from unmanned aerial vehicles and assessed the optimal performance 

trade-off between coverage and resolution.  

3. We first established an analytical limit for detection based on the minimal pixel size that is 

used by RetinaNet to generate region proposals, or ‘anchor boxes.’ Then, we empirically 

validated the effect of object size representation in the data on the accuracy of dolphin 

detection. 

4. The minimal anchor size that is required to facilitate detection was found to be 322 pixels. 

Similarly, a high F-measure score was obtained when objects that are smaller than 322 pixels 

were excluded from the training process; dolphins occupying more than 452 pixels yielded 

recall rates above 0.8.  

4. Our results demonstrate that the pixel size of both anchors and objects contribute to the 

optimal trade-off between coverage and resolution and influence network performance. We 

demonstrate the applicability of our findings to survey design in large-scale monitoring 

programmes as well as designated data-acquisition missions. 
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1. | INTRODUCTION 

Unmanned aerial vehicles (UAVs; or drones) are avowed as a revolutionary tool in 

environmental monitoring, management and conservation (Anderson and Gaston, 2013; 

Gonzalez et al., 2016; Fiori et al., 2017; Jiménez López and Mulero-Pázmány, 2019). They 

offer a cost-effective, low-risk and less invasive alternative to conventional survey techniques 

as well as easier operation logistics (Christie et al., 2016). Moreover, they exhibit high spatial 

and temporal resolution, and the footage they produce constitutes systemic and permanent data 

which can later be reviewed by a high number of experts (Linchant et al., 2015; E. Bigal, in 

press). Finally, recent technological developments, such as the miniaturisation of electronic 

components, the improvement of payloads, the increase in computational power for central 

processing units (CPUs), and the development of intelligent flight control subsystems, have 

made UAVs more versatile and affordable in the civilian market (Colefax et al., 2018; Wang 

et al., 2019). Indeed, the burgeoning application of UAVs in ecological and wildlife studies 

demonstrates that a growing number of scientists are embracing these platforms (Christie et 

al., 2016). Achieved applications include the optical sampling of animal behaviour and health 

(e.g., Durban et al., 2015, 2016; Christiansen et al., 2016; Cheney et al., 2017; Pirotta et al., 

2017; Torres et al., 2018), autonomous telemetry tracking (e.g., Selby et al., 2011; Raoult et 

al., 2018), and habitat monitoring and research (Crocker et al., 2011; Mancini et al., 2013; Tang 

and Shao, 2015). 

UAVs have proven useful as an unobtrusive means of surveying species in hard-to-access 

environments (Chabot and Bird, 2015). This sentiment is particularly pertinent to marine 

animals which are notoriously difficult to study and are usually surveyed from occupied aircraft 

owing to the vast and often remote areas of their occurrence (Linchant et al., 2015; Wang et 

al., 2019). In this respect, two categories of UAV operations can be distinguished: ‘close-up’ 

missions, of which objective is to observe or sample animals at known locations and in 
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relatively small airfields, therefore typically employing rotary-wing UAVs, and ‘overflight’ 

missions, which use fixed-wing platforms to survey the abundance and distribution of animals 

across larger, pre-delineated areas (Chabot and Bird, 2015). However, considering the typically 

low densities of marine megafauna populations as well as their limited availability for 

detection, the possibilities of spotting animals in images have been assessed for a limited 

number of species, e.g., sea turtles and sharks (Sykora-Bodie et al., 2017; Hensel et al., 2018), 

and only a few studies have employed UAVs for the monitoring of wildlife across large areas 

(e.g., Hodgson et al., 2013, 2017; Aniceto et al., 2018). Furthermore, overflights generate 

substantial volumes of data as a high overlap between pictures is required to ensure that all 

animals on the transect are detected and counted. The analysis of such data may be time-

consuming, expensive and prone to human error, and the lack of resources required for the 

manual reviewing of images remains a significant bottleneck to UAV integration with 

conventional monitoring programmes (Jiménez López and Mulero-Pázmány, 2019; Saqib et 

al., 2019). Therefore, there is a strong need to automate the detection, localisation and 

enumeration of objects in UAV data (van Gemert et al., 2015; Karnowski et al., 2016). In recent 

years, a variety of image analysis and machine-learning techniques have been applied to assess 

wildlife populations in aerial imagery (Gururatsakul et al., 2010; Mejias et al., 2013; Raoult 

and Gaston, 2018), and interest in deep-learning methods, particularly, has increased (Gray et 

al., 2019).  

Unlike conventional machine-learning applications, deep-learning includes automated feature 

extraction, i.e., ‘self-taught’ pre-processing of raw input data, creating high-level abstractions 

for analytical tasks including object classification and detection (Gray et al., 2018). Among 

deep-learning methods, convolutional neural networks (CNNs) are most optimally-designed 

for image processing and analysis (Hong et al., 2019). CNNs represent semantic cues in the 

data while maintaining generalisation capacity, i.e., transferability to other object classes such 
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as different biological taxa, marine debris and vessels (Fallati et al., 2019; Lorencin et al., 

2019). Their applicability to UAV-based surveys in the marine environment has been 

demonstrated for a variety of megafauna species including dugongs (Maire et al., 2015), sharks 

(Levy et al., 2018; Sharma et al., 2018), whales (Gray et al., 2019), dolphins and rays (Saqib 

et al., 2019), and sea turtles (Gray et al., 2018). However, only Gray et al. (2018) employed a 

CNN for automated object detection in a purely UAV-based, animal abundance survey. An 

often-cited challenge, in this respect, is that abundance estimates are based on the area of search 

which is directly related to the flight altitude and the resultant ground sampling distance (GSD; 

or image resolution). Several authors reported partial or complete loss of detections due to 

severe class imbalance, i.e., differing object-to-background pixel representation as image 

altitude increased (Levy et al., 2018; Eikelboom et al., 2019). In turn, this may result in a high 

number of false training samples and, thus, reduced network performance. Hence, UAVs must 

strike a balance between image resolution and strip width while also considering the size of the 

target species (Colefax et al., 2019; Wang et al., 2019). 

In this study, we assessed the influence of GSD on the performance of a state-of-the-art, fully 

convolutional, one stage neural network, namely RetinaNet (Lin et al., 2017), trained for the 

automated detection of dolphins in imagery from UAVs. This CNN has been demonstrated to 

complement manual counts during animal abundance surveys and proposed to potentially 

outperform humans in detection from the aerial perspective (Eikelboom et al., 2019). It uses 

entire images as input and constructs feature maps to generate ‘anchors’, i.e., region proposals 

for detections. Classification and bounding box regression for each anchor is then performed 

to predict the presence and location of objects. Moreover, by using the Focal Loss function, 

which concentrates the training process on difficult classification instances, it is able to address 

the class imbalance issue (Levy et al., 2018). Thus, given the optimal trade-off between 

coverage and resolution, it may prove more suitable for animal abundance surveys than other 
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CNNs which, in a general context, were found to be preferable for the processing of UAV 

imagery (Hong et al., 2019). Indeed, these authors mentioned that, for certain applications, the 

RetinaNet CNN occasionally outperforms supposedly superior models. Our analysis considers 

the smallest object representation area required for the automated detection of dolphins and 

relates to two aspects of the network’s training process: minimal anchor size and dataset 

composition. We posit that both parameters contribute to the optimal trade-off between 

coverage and resolution and influence network performance. Finally, we demonstrate the 

calculation of the maximal flight altitude per minimal object size, providing for survey design 

in close-up as well as overflight missions. 

 

2. | MATERIALS AND METHODS 

In 2018, the Agreement for the Conservation of Cetaceans of the Black Sea, Mediterranean 

Sea and contiguous Atlantic Area (ACCOBAMS) launched a region-wide monitoring effort 

employing conventional survey platforms – the ACCOBAMS Survey Initiative (ASI). Inspired 

by this programme, the current study was aimed to identify potential hindrances to the 

widespread adoption of UAVs by large-scale efforts of marine mammal monitoring. We, 

therefore, concentrated our empirical work on the three smallest species of cetaceans occurring 

in the Mediterranean Sea, namely striped dolphin (Stenella coeruleoalba), short-beaked 

common dolphin (Delphinus delphis) and common bottlenose dolphin (Tursiops truncatus). 

Due to their small size, compared to most cetaceans, those species are likely to require the 

highest GSD and, hence, the lowest flight altitude per any given sensor. Nevertheless, the 

general approach described here can also be applied to aerial surveys for smaller species likely 

to be observed at the surface, such as sea turtles, fish and birds. Finally, animal detectability in 

UAV imagery may be influenced by intrinsic (e.g., group size and diving synchrony) as well 

as extrinsic factors (e.g., image quality and environmental conditions). In order to demonstrate 
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the robustness of our work, data collection was carried out in a variety of geographical and 

environmental settings and included multiple UAV models, as described in the following 

section. 

 

2.1. | Data collection: 

We utilised shipboard platforms to perform close-up UAV flights around observed groups of 

dolphins. Surveys for S. coeruleoalba were conducted in August and September 2017 off the 

coast of Italy, in the northern Ligurian Sea, using a DJI Phantom 1 quadcopter (DJI Co., 

Shenzehn, China) with a mounted GoPro Hero3+ Black edition camera (GoPro Inc., Ca, USA) 

Footage of D. delphis and T. truncatus was obtained between September 2017 and May 2020, 

off the coast of Israel, in the eastern Levantine Sea, using four quadcopter models: DJI Mavic 

Pro; DJI Phantom 3 Advanced; DJI Phantom 4 Advanced; and DJI Phantom 4 Pro. The flights 

were carried out in a range of sea conditions and included focal follows in both video and still 

modes. Once launched, the UAV was positioned 100 m directly above the animals and then 

gradually lowered to an altitude of 20 m. Descents were paused in 10 m intervals to provide 

for the UAV’s stability as the imagery was obtained. We implemented best practice to pilot the 

UAVs around marine megafauna following Hodgson and Koh (2016) and Ramos et al. (2018). 

A total of 1125 images containing 6075 objects, i.e., non-unique dolphins, were included in the 

analysis, representing 20 different encounters (S. coeruleoalba, n = 8; D. Delphis, n = 6; T. 

truncatus, n = 6). Three separate datasets were generated to train, validate and test the CNN 

(Table 1). Image annotation was performed on Labelbox [https://labelbox.com/], an online 

training data platform. 
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Table 1: Data partitioning according to object size. 

Dataset All Images > 512 pixels > 1024 pixels 
Images Objects Images Objects Images Objects 

Training 788 (70%) 4094 (67%) 777 (70%) 4385 (71%) 717 (70%) 3488 (70%) 

Validation 169 (15%) 966 (16%) 164 (15%) 850 (14%) 150 (15%) 698 (14%) 
Testing 168 (15%) 1060 (17%) 168 (15%) 977 (16%) 156 (15%) 773 (16%) 

 

2.2. | Data analysis: 

During the training process, the detector generates anchors to be classified as either objects or 

background based on their degree of pixel overlap with manually annotated, ground truth 

bounding boxes. In order for a given anchor to qualify as true positive (TP), the intersect-over-

union (IoU) ratio of their pixel representation areas must be greater than or equal to a pre-set 

threshold value. Each anchor and bounding box are available for one use only while high-IoU 

pairings are prioritised by the detector. Unpaired anchors and bounding boxes are considered 

false positives (FP) and false negatives (FN), respectively. We used the standard IoU threshold 

of 0.5 for training. By default, the RetinaNet detector employs an area of 322 pixels as the 

minimum anchor size, as smaller objects usually do not have enough details to facilitate 

detection. Hence, the smallest object size yielding a TP is 0.5 ⋅ 32' = 512 pixels. 

In order to assess the potential of improving network performance by using smaller anchors, 

we compared the above dimensions with a configuration of 162 pixels, which yields a minimal 

detectable area of 0.5 ⋅ 16' = 128 pixels. The detection performance for each trained network 

was evaluated using the precision and recall metrics. The former is defined as the proportion 

of correct detections from the total number of proposals, i.e., the number of TP divided by the 

sum of TP and FP, whereas the latter is the proportion of correct detections from all ground 

truth bounding boxes, i.e., TP divided by the sum of TP and FN. In every system, there is an 

inherent trade-off between those two measures, where 100% recall can be gained with 0% 

precision and vice-versa. In our case, a higher recall would potentially translate into a greater 
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number of ‘small’ dolphins being detected by the network. However, this could also be 

obtained by adjusting the UAV’s flight or imaging parameters to increase the GSD while 

maintaining a higher quality of detections. Therefore, the analyses described below, for the 

smallest object size required to facilitate detection and its corresponding maximal flight 

altitude, employed the anchor dimensions yielding the highest value of precision.  

In order to determine the smallest dolphin representation area, i.e., object size, that can be 

detected by the network, we repeated the training process a total of three times using different 

dataset compositions: 1. All objects, including instances that were smaller than the 

multiplication product of the anchor dimensions and IoU threshold; 2. Excluding those small 

objects; 3. Objects greater than or equal to the minimal anchor size with an IoU value of 1, i.e., 

full overlap. Again, the detection performance was evaluated using the trade-off between recall 

and precision. This trade-off is controlled by varying a single parameter, the score confidence 

threshold, which indicates the class prediction probability given to each bounding box. In each 

run, we automatically chose the threshold resulting in the highest overall accuracy according 

to the F-measure, as defined in Equation 1: 

F-measure = 2 ∙
recall ∙ precision
recall+precision 

For network testing, the number of epochs was 70, and we used a lower IoU threshold of 0.4, 

because the accurate positions of animals in the image is often irrelevant for animal abundance 

surveys (Eikelboom et al., 2019), and the multiplication product of this value and the minimal 

anchor size would enable to detect potentially smaller objects. 

Finally, given the smallest detection area in pixels as well as the sensor’s specifications, the 

properties of perspective projection were employed to calculate the maximal flight altitude per 

body size of target species, ℎ=>?(𝑆), as described in Equation 2: 

ℎCDE(𝑆) = 𝑓 ⋅ G
Horganism
JK⋅Hmin

 , 
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where 𝑓 is the camera’s focal length in millimetres; 𝑆organism is a multiplication product of the 

animal’s width and length in metres; 𝑝 is pixel pitch in millimetres; 𝑆min is the minimal object 

size, in pixels, required by the network for detection. Notably, this equation assumes the camera 

sensor plane is parallel to the sea surface. 

 

3. | RESULTS 

The analysis of network performance per minimal anchor size, i.e., 322 and 162 pixels, returned 

a higher recall for the former yet improved precision for the latter (Figure 1). Again, for any 

anchor size, a high proportion of TP from the total number of proposals entails lower network 

sensitivity and, thus, more FP and FN. An example of the trade-off between recall and precision 

in our data is shown in Figure 2, where a high number of small dolphin detections was obtained 

using the 162-pixel minimal anchor size (top right) yet, in this configuration, sun glitter was 

also proposed as objects (middle right) and dolphins of a larger size were sometimes not 

detected (bottom right). Therefore, in the subsequent performance analyses, we used a minimal 

anchor size of 322 pixels. 

 

Figure 1: Receiver operating characteristic (ROC) curves of the recall and precision gained from two networks 
trained with a minimal region proposal area of 162 and 32 pixels (blue and red, respectively). 
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Given the above results, we repeated the network’s training using three object size 

representations: 1. All objects; 2. Excluding objects smaller than 512 pixels; 3. Objects greater 

than or equal to 1024 pixels. Figure 3 depicts the average network performance for all object  

 

Figure 2: Compared performance of networks trained with a small (left) and standard (right) anchor size. 
Network output and manual ground truth annotations are represented by the red and green rectangles, 

respectively. 
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Figure 3: Effect of object size representation in the data on the maximum F-measure score, recall rate and 
precision. The numbers along the curve indicate the corresponding threshold values. 

sizes in each of the training sets. The overall accuracy of the network, represented by the 

maximum F-measure, improved from 0.74 to 0.79 and 0.81 in training sets 1, 2 and 3, 

correspondingly; the average recall increased from 0.68 to 0.77 and 0.77, respectively, and the 

average precision decreased from 0.82 for the entire dataset to 0.81 when small objects were 

excluded, and then improved to 0.85 where only large objects were used. In order to determine 

the minimal representation area in pixels that is required to facilitate detection, we assessed the 

recall rate as a function of object size for each of the three networks (Figure 4). While the recall 

metric may be misleading without its corresponding precision, the latter incorporates FN of 

which size is of irrelevant. Therefore, we excluded it from the analysis. 
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Figure 4: Recall as a function of object size. 

 

The plot depicts a marked increase in recall rates as object size increases up to 1000 pixels. 

Objects of approximately 2000 pixels returned recall rates of 85-95% with a more moderate 

slope for instances of larger sizes. Note, that the three networks exhibited similar curves, yet, 

as mentioned with regard to Figure 3, precision was higher where small objects were excluded. 

Figure 5 depicts two examples of differences in overall accuracy between the three trained 

networks. In the first example (a-c), where objects smaller than 512 pixels were included in the 

training set (a), a higher number of FN is observed compared to the two other networks (b, c); 

in the second example (d-f), high performance is obtained by only including objects larger than 

1024 pixels (f). 
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Figure 5: Effect of object size representation in the data (left, small; centre, medium; right, large) on detection 
performance. Two different examples are provided (top, a-c; bottom, d-f). Network output and manual ground 

truth annotations are represented by the red and green rectangles, respectively.  

  

Finally, concerning data acquisition, the minimum object size of 1024 pixels may be used to 

calculate the maximal flight altitude per body size of target species. For example, during our 

surveys of S. coeruleoalba, we used a GoPro Hero3+ Black edition camera (2.1). Given the 

camera specifications as well as a focal length of 2.9 mm and pixel pitch of 0.0015 mm, a 

generic dolphin of 2.5 m in length and 1.5 m in width would be detected from an altitude of up 

to 113 m, based on Equation 2. As regards D. delphis and T. truncatus, the primary UAV 

employed was a DJI Phantom 4 Pro quadcopter and the calculated focal length and pixel pitch 

were 7.5 mm and 0.0088 mm, respectively, yielding a maximal flight altitude of 51.5 m for the 

above dolphin dimensions. 
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4. | DISCUSSION 

In this study, we employed the RetinaNet CNN for the detection of dolphins in imagery from 

UAVs. We assessed the potential of optimising survey design in aerial abundance surveys by 

establishing the optimal performance trade-off between coverage and resolution.  

First, we examined the effect of utilising the detector’s standard dimensions of minimal region 

proposals, or ‘anchors,’ compared to a smaller size configuration, i.e., 322 and 162 pixels, 

respectively. Higher precision, which we considered the most relevant metric (2.2), was 

obtained by the standard anchor dimensions. In the second stage, we assessed the effect of 

object size representation in the data on the overall accuracy of detections. High average 

performance was obtained when all objects that are smaller than 322 pixels were excluded from 

the training process, which improved the F-measure score from 0.74 to 0.79 and 0.8 in networks 

1, 2 and 3, respectively. Concerning the direct effect of object size on performance, dolphins 

occupying less than 22.52 pixels were not detected, whereas those larger than 452 pixels yielded 

recall rates above 0.8. For reference, Eikelboom et al. (2019) used the RetinaNet CNN to detect 

elephants, giraffes and zebras in aerial images from a semi-automated, animal abundance 

survey, and reported F-measure scores of 0.76, 0.78 and 071, respectively, for larger object 

sizes, of 502 pixels.  

Considering the lack of publicly-available, annotated aerial imagery for the study of marine 

species (Saqib et al., 2019), ecologists are advised to avoid the collection of unusable data 

during animal encounters which, in the case of some cetaceans, may be particularly rare. 

Hence, species-specific protocols referring to the flight and imaging parameters should be 

developed based on the required accuracy and transect width (Wang et al., 2019), and not vice-

versa. Indeed, our results demonstrate the effect of object size representation in the data on the 

CNN’s detection performance. This example may be particularly useful to studies that rely on 

pre-existing training sets, where animals are photographed in a variety of GSDs. In cases where 
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the RetinaNet detector’s accuracy is used to compare between different counting methods or 

alternative CNNs, and imagery has been collected from a constant GSD, the minimal anchor 

size can also be adjusted to meet recall or precision requirements. Notably, such surveys may 

not always generate sufficient volumes of data to ensure model robustness. Therefore, training 

set augmentation methods are usually used as a pre-processing method as well as 

complimentary, species-specific close-up flights (e.g., Hong et al., 2019). Thus, the results of 

this study apply to operations employing both rotary- and fixed-wing UAVs.  

Finally, our study emphasises the importance of uploading annotated aerial imagery for future 

studies employing CNNs. Data availability may be particularly valuable with regard to low-

density populations of highly-mobile species in the offshore marine environment, such as small 

cetaceans. To that end, we make our image data and annotations available for public use. 

We suggest that future research into the potential of UAV integration with conventional 

cetacean surveys, and the use of CNNs for automated object detection, should be focused on 

inference data obtained during large-scale, animal abundance surveys employing fixed-wing 

UAVs. However, training sets should be pre-established and represent a range of object sizes. 
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